Temperature and CH* Measurements in Laminar Premixed Jet-Wall Stagnation Flames

Jochen AH Dreyer, **Eric J Bringley**, Manoel Y Manuputty, Jethro Akroyd, Markus Kraft

January, 2021

38th International Symposium on Combustion, Adelaide AUS

Team

Eric Bringley Manoel Manuputty

Jet-Wall Stagnation Flames

r(x)

X

Flame Uses:

Laminar Flame Speed Mechanism Development Chemical Pathway (CH, NO_x) Particle Synthesis

Nozzle Purpose:

accelerate laminar flow; *min*(boundary layer)

Nozzle Design: 1D boundary layer optimise shape parameters

Cambridge CARES Burner

Water-cooled Stagnation plate

Chambers filled with glass beads (to homogenise flow)

2D Flame Characterisation

Off-centreline flow crosses SiC filament at an angle

Energy balance using correlations for heat transfer over an inclined cylinder

2D simulations provide: flow field velocity and angle Multicomponent properties

1

Modelling

1D Simulations: Stream function approx. TWOPNT method

2D Simulations: Navier Stokes Equations

CFD with PISO Alg.

Models:

Ideal Gas Law, JANAF, Mixture Avg. Transport, UCSD Chemistry

Experimental Parameters: $(\phi, U, H/D)$

$$1$$

$$H = D$$

$$14 \text{ mm}$$

$$U = 2 m/s$$

$$\phi = 0.7$$

$$4$$

$$\begin{array}{c} \mathbf{3} \\ \end{bmatrix} U = 3 \ m/s \\ \end{bmatrix} H = 0.6D \\ \boxed{} \\ \hline{} \\ \hline{} \\ \hline{\phantom$$

 ϕ = Equivalence Ratio U = Premixed Gas Flow Velocity H/D = Dimensionless Separation

CH* Chemiluminescence

curvature depends on flame-nozzle distance

Simulated Flame Shape

2D has simple boundary conditions and is predictive 1D requires strain boundary condition which is guessed

Filament Disturbance

chemiluminescence used to assess filament disturbance

Filament Disturbance

Minimal disturbance from the flame attaching to the filament

Temperature

TFP captures temperature field well downstream, slightly overpredicts flame front

CoMo GROUP

Centreline Temperature

TFP slightly overpredicts flame front temperature

Contributions

Improved heat balance

TFP: Less Disturbance

New Experimental Data

